Time-Dependent Density-Functional Theory for Nonadiabatic Electronic Dynamics
نویسندگان
چکیده
منابع مشابه
Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.
Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual an...
متن کاملNonadiabatic dynamics within time-dependent density functional tight binding method.
A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tully's stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presenc...
متن کاملNonadiabatic time-dependent spin-density functional theory for strongly correlated systems.
We propose a nonadiabatic time-dependent spin-density functional theory (TDSDFT) approach for studying single-electron excited states and the ultrafast response of systems with strong electron correlations. The correlation part of the nonadiabatic exchange-correlation (XC) kernel is constructed by using exact results for the Hubbard model of strongly correlated electrons. We demonstrate that th...
متن کاملTime-dependent density functional theory.
Time-dependent density functional theory (TDDFT) can be viewed as an exact reformulation of time-dependent quantum mechanics, where the fundamental variable is no longer the many-body wave function but the density. This time-dependent density is determined by solving an auxiliary set of noninteracting Schrodinger equations, the Kohn-Sham equations. The nontrivial part of the many-body interacti...
متن کاملTime-Dependent Density Functional Theory
c 2006 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2009
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.102.053002